
Type Theory and Its Applications to Computer Science∗

César Muñoz
munoz@nianet.org

National Institute of Aerospace
100 Exploration Way, Hampton, VA 23666.

April 10, 2007

Abstract

Type theory is a mathematical technique widely used
in computer science. In the formal methods commu-
nity, type theory is at the basis of expressive speci-
fication languages and powerful proof assistant tools
based on higher-order logic. From a practical point of
view, type theory has been used to improve the qual-
ity of software systems by enabling the detection of
errors before they become run-time problems. This
article presents a general overview of type theory and
its role in the foundation of programming and speci-
fication languages.

Introduction

In elementary school we are taught that a set is a
collection of elements having some characteristics in
common. Later, teachers ask whether or not an ele-
ment belongs to a given set. For example, they state
that the collection of stars in the universe is a set, and
then they ask if the element moon belongs to that set
or not. The very simple theory of sets behind these
two concepts:

∗This original version of this article appeared in the Quar-
terly News Letter of the Institute for Computer Applications
in Science and Engineering (ICASE), Vol. 8, No. 4, December
1999. The ICASE institute closed down in December 2002 and
its Quarterly News Letter is no longer available. The version
provided here is an update of the original one. This work was
supported by the National Aeronautics and Space Administra-
tion under NASA Contract No. NAS1-97046 and Cooperative
Agreement NCC-1-02043.

1. every predicate is a set, and

2. it is always possible to ask if an element satisfies
a predicate,

is known as the nâıve set theory. In 1902, Russell has
shown that the nâıve set theory is inconsistent, i.e.,
it leads to paradoxes [23]. A well-known paradox due
to Russell is the following. Let A be the set of all
the sets that are not elements of themselves. Is A an
element of itself? Both positive and negative answers
to this question raise a contradiction.

To solve Russell’s paradox, two theories were pro-
posed: the Set Theory of Zermelo-Fraenkel [6] (a.k.a.
set theory) and the Type Theory of Whitehead-
Russell [23] (later simplified by Ramsey and Church
[4, 19]) (a.k.a. type theory).

In set theory the postulate that every predicate is
a set has been replaced by very precise rules of con-
struction of sets. For instance, the comprehension
rule that defines a set by a predicate is only allowed
over previously constructed sets. In set theory, the
“set” of all the sets that are not elements of them-
selves is simply not a set since it does not respect the
comprehension rule.

On the other hand, in type theory the postulate
that allows us to ask if an element belongs to a set
has been constrained. In this approach, mathemati-
cal objects are stratified in several categories, namely
types. In particular, the type of a set is different from
the type of its elements. Since all the elements of a
set must have the same type, the question “Is A an
element of itself ?” is not a valid question. From the

1



type theory point of view, teachers are not always
allowed to ask about arbitrary elements on arbitrary
sets.

Set theory (together with classical logic) is the
standard foundation of modern mathematics. How-
ever, type theory, and all its variants, is widely pop-
ular in the computer science community. In the rest
of this article we present a general overview of type
theory and its role in computer science, i.e., the foun-
dation of programming and specification languages.

Type Theory and Its Applica-
tions

A minimal type system, known as the Simple Type
Theory, was proposed by Church in [4]. In that the-
ory, mathematical objects are of two kinds: terms
and types. The terms of the Simple Type Theory
are the terms of the λ-calculus, itself being a for-
malization of partial recursive functions proposed by
Church [5]. Types can be basic types or functional
types A → B where A and B are types.

In λ-calculus, terms can be variables, functions, or
applications. Only terms that follow a type discipline
are considered to be valid. The type discipline is
enforced by a set of typing rules. A typing rule says,
for example, that a function f can be applied to a
term x if and only if f has the type A → B and x has
the type A. In that case, the application f(x) has the
type B. Thanks to the typing rules, Russell’s paradox
cannot be expressed in the simple type theory.

Type checking is decidable in the simply typed λ-
calculus. That is, it is decidable whether or not a
term has a type according to the typing rules.

The Simple Type Theory can be extended straight-
forwardly with simple data types such as Cartesian
products, records, and disjoint unions [3]. For this
reason, simple types have been largely used by de-
signers of programming languages. Indeed, most of
the modern programming languages support, to some
extent, a simply-typed system. In these languages,
programs violating the type discipline are considered
harmful, and therefore, they are rejected by the com-
piler. Thus, type checking is a powerful tool to elimi-

nate run-time problems. For instance, in Pascal [10],
boolean functions cannot be applied to integers. This
restriction happens to be a simply typed rule enforced
by the compiler. On the other hand, C [11] supports
a more liberal typing discipline; the compiler warns
of some violations, but it seldom rejects a program.
Almost every C-programmer knows the danger of this
flexibility in the language.

When writing formal specifications, the choice of a
typed language, in opposition to a language based on
set theory, is not always evident [12]. In contrast to
programs, specifications are not supposed to be exe-
cutable. Thus, a too restrictive type theory, as for ex-
ample the simply typed λ-calculus, quickly becomes
cumbersome to write enough abstract specifications.
Several variants of type theories have been proposed
in the literature, most of them are still convenient to
write formal specifications and powerful enough to
reject specifications that are undesirable [21]. Let us
review some extensions to the Simple Type Theory.

Polymorphism and Data Types

A major improvement to the Simple Type Theory, is
the System F proposed by Girard [7]. System F ex-
tends λ-calculus with quantification over types; that
is, it introduces the notion of type parameters which
is at the basis of the concept of polymorphism. In
this system, generic data types as list, trees, etc.
can be encoded. Type checking is still decidable in
a type system that supports polymorphism and ab-
stract data type declarations.

In programming languages, polymorphism allows
for the reuse of code defined over structures param-
eterized by a type. For instance, a sort function is
essentially the same whether it works over a list of
integers or a list of strings. Polymorphic-typed lan-
guages exploit this uniformity without losing the abil-
ity to catch errors by enforcing a type discipline.

Although most of the specification languages based
on higher-order logic support polymorphism [2, 13,
17, 18], just a few modern programming languages
implement it correctly.

The functional programming languages of the ML
family [16] are strongly typed languages that support
algebraic data types and polymorphism. They use

2



a type inference mechanism based on Milner’s algo-
rithm [15]. Therefore, although these languages are
strongly typed, the types of the expressions occurring
in programs are automatically inferred by the com-
piler. Hence, ML programs are almost free of type
declarations.

Object-oriented imperative languages such as Eif-
fel [14], C++ [22], and Java [1] support parametric
classes, which is a form of polymorphism. However,
object-oriented features, side effects, and polymor-
phism result in very complex type systems. Eiffel
uses a rather complicated and ad-hoc type system,
C++ follows the same liberal discipline of C with re-
spect to type checking, and Java only supports single
inheritance.

Dependent Types and Constructive
Type Theories

Dependent types is the ability to define types that
depend on expressions. For instance, in Pascal the
type declaration array[1..10] of integers is a
dependent-type declaration since this type depends
on expressions 1 and 10. A general theory of de-
pendent types, called LP, was proposed by Harper et
al. [9].

Dependent types, polymorphism, and inductive
data types are supported by a very expressive exten-
sion to the λ-calculus called the Calculus of Induc-
tive Constructions (CIC). This calculus is the logi-
cal framework of the proof assistant system Coq [2].
Type checking is decidable in CIC and the calcu-
lus satisfies the strong normalization property, i.e.,
functions defined in the CIC formalism always ter-
minate. The Calculus of Inductive Constructions
also supports the propositions-as-types principle of
the higher-order intuitionistic logic. According to
this principle, a proof of a logical proposition A is the
same as a term of type A. This isomorphism between
proofs and terms is also known as the Curry-Howard
isomorphism [8]. In practice, the Curry-Howard iso-
morphism is used to extract a program from the con-
structive proof of the correctness of an algorithm.
Programs extracted this way satisfy the termination
property.

Although very simple dependent types such as ar-
rays are used in most programming languages, gen-
eral dependent types and constructive types are still
hard to handle in programming languages. One no-
tably exception is DML [24], a the conservative ex-
tension of ML with a restricted, but practical, form
of dependent types.

Subtyping and Other Mysteries

In type theory every object has at most one type. A
drawback of this postulate is that an object as the
natural number 1 has to be different from the real
number 1. A way to handle this problem is to intro-
duce predicate subtyping [21], i.e., the ability to define
new types by a predicate on previously defined types.
For instance, the type nat can be defined as a sub-
type of real such that it contains only the numbers
generated from 0 and +1. Via predicate subtyping
the natural number 1 is also a real number.

The type theory of the general verification sys-
tem PVS [20] supports predicate subtyping. Unfortu-
nately, general predicate subtyping rends type check-
ing undecidable. In PVS, the type-checker returns a
set of type correctness conditions (TCCs) that should
be discharged by the user; these TCCs guarantee the
type correction of the formal development. In prac-
tice, TCCs are not a problem since PVS provides a
powerful theorem prover that implements several de-
cision procedures and proof automation tools.

Due to the undecidability problem, general pred-
icate subtyping is not used in programming lan-
guages. However, object-oriented programming lan-
guages opened the door to an interesting kind of
structural subtyping: inheritance. Via inheritance,
two structurally different types may share some ele-
ments. Related concepts to inheritance are those of
overloading, that is, the ability to use the same name
for different functions, and dynamic typing, that is,
the ability for objects to change their types during
the execution of a program. The formal semantics of
all these concepts in a typed framework is still subject
of research and controversy.

3



Summary

Type theory offers a convenient formalism to write
specifications and the ability to reject undesirable
specifications long before they are refined into actual
implementations. In programming languages, type
checking allows for the elimination of run-time errors
at the compilation phase. Type systems used in spec-
ification languages and in programming languages
differ in complexity and in expressiveness. Current
research in the area includes bringing the benefits
of very expressive type systems to programming lan-
guages used by practitioners. In order to do that, it
is necessary to adapt and simplify the highly math-
ematical notations of the complex type systems into
easily handled programming language features.

About the Author

César Muñoz received his Ph.D. in Computer Sci-
ence from the University of Paris 7 in November
1997. During his graduate studies he worked as a
Research Assistant in the Coq Project at INRIA Roc-
quencourt. After completing his Ph.D., he spent one
and a half years as an International Fellow in the
Computer Science Laboratory at SRI International in
Menlo Park. He joined ICASE as a Staff Scientist in
May 1999. Since January 2003, Dr. Munoz is a senior
staff scientist at the National Institute of Aerospace
where he leads the Formal Methods Group. His re-
search focuses on the development of formal methods
technology for the verification of critical aerospace
applications.

References

[1] Ken Arnold and James Gosling. The Java Pro-
gramming Language. The Java Series. Addison-
Wesley, Reading, MA, second edition, 1998.

[2] B. Barras, S. Boutin, C. Cornes, J. Courant,
J.C. Filliatre, E. Giménez, H. Herbelin, G. Huet,
C. Muñoz, C. Murthy, C. Parent, C. Paulin,
A. Säıbi, and B. Werner. The Coq Proof Assis-

tant Reference Manual – Version V6.1. Technical
Report 0203, INRIA, August 1997.

[3] Luca Cardelli. Type systems. In Handbook of
Computer Science and Engineering, chapter 103,
pages 2208–2236. CRC Press, 1997. Available at
http://www.research.digital.com/SRC.

[4] A. Church. A formulation of the simple theory of
types. Journal of Symbolic Logic, 5:56–68, 1940.

[5] A. Church. The Calculi of Lambda-Conversion.
Princeton University Press, 1941.

[6] A. A. Fraenkel, Y. Bar-Hillel, and A. Levy.
Foundations of Set Theory, volume 67 of Stud-
ies in Logic and the Foundations of Mathemat-
ics. North-Holland, Amsterdam, The Nether-
lands, second printing, second edition, 1984.

[7] J.-Y. Girard. Une extension de l’interprétation
de Gödel à l’analyse, et son application à
l’élimination des coupures dans l’analyse et la
théorie des types. In J. E. Fenstad, editor, Pro-
ceedings 2nd Scandinavian Logic Symp., Oslo,
Norway, 18–20 June 1970, volume 63 of Studies
in Logic and the Foundations of Mathematics,
pages 63–92. North-Holland, Amsterdam, 1971.

[8] J.-Y. Girard, P. Taylor, and Y. Lafont. Proof
and Types. Cambridge University Press, 1989.

[9] R. Harper, F. Honsell, and G. Plotkin. A frame-
work for defining logics. Journal of the Associ-
ation for Computing Machinery, 40(1):143–184,
1993.

[10] K. Jensen and N. Wirth. The Programming Lan-
guage Pascal. Springer-Verlag, 1975.

[11] B. W. Kernighan and D. M. Ritchie. The C
Programming Language, Second Edition. Pren-
tice-Hall, Englewood Cliffs (NJ), USA, 1988.

[12] Leslie Lamport and Lawrence C. Paulson.
Should your specification language be typed?
SRC Research Report 147, Digital Systems Re-
search Center, Palo Alto, CA, May 1997. Avail-
able at http://www.research.digital.com/
SRC.

4



[13] M. J. C. Gordon and T. F. Melham. Introduc-
tion to HOL: A Theorem Proving Environment
for Higher Order Logic. Cambridge University
Press, 1993.

[14] Bertrand Meyer. Eiffel: The Language. Object-
Oriented Series. Prentice Hall, New York, NY,
1992.

[15] R. Milner. A theory of type polymorphism in
programming. J. Comp. Syst. Scs., 17:348–375,
1977.

[16] Robin Milner, M. Tofte, and R. Harper. The
Definition of Standard ML. MIT Press, Cam-
bridge, MA, 1991.

[17] S. Owre, J. M. Rushby, and N. Shankar. PVS: A
prototype verification system. In Deepak Kapur,
editor, 11th International Conference on Auto-
mated Deduction (CADE), volume 607 of Lec-
ture Notes in Artificial Intelligence, pages 748–
752, Saratoga, NY, June 1992. Springer-Verlag.

[18] L. C. Paulson. Isabelle: A Generic Theorem
Prover, volume 828 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1994.

[19] F. P. Ramsey. The foundations of mathemat-
ics. In D. H. Mellor, editor, Philosophical Pa-
pers of F. P. Ramsey, chapter 8, pages 164–224.
Cambridge University Press, Cambridge, UK,
1990. Originally published in Proceedings of the
London Mathematical Society , 25, pp. 338–384,
1925.

[20] K. H. Rose. Explicit cyclic substitutions.
In M. Rusinowitch and J.-L. Rémy, editors,
Proc. CTRS ’92—3rd International Workshop
on Conditional Term Rewriting Systems, num-
ber 656 in Lecture Notes in Computer Sci-
ence, pages 36–50, Pont-a-Mousson, France,
July 1992. Springer-Verlag.

[21] J. Rushby, S. Owre, and N. Shankar. Sub-
types for specifications: Predicate subtyping in
PVS. IEEE Transactions on Software Engineer-
ing, 24(9):709–720, September 1998.

[22] Bjarne Stroustrup. The C++ Programming Lan-
guage: Third Edition. Addison-Wesley Publish-
ing Co., Reading, Mass., 1997.

[23] A. N. Whitehead and B. Russell. Principia
Mathematica. Cambridge University Press,
Cambridge, revised edition, 1925–1927. Three
volumes. The first edition was published 1910–
1913.

[24] Hongwei Xi and Frank Pfenning. Dependent
types in practical programming. In Proceed-
ings of the 26th ACM SIGPLAN Symposium
on Principles of Programming Languages, pages
214–227, San Antonio, January 1999.

5


